201 research outputs found

    RadAdapt: Radiology Report Summarization via Lightweight Domain Adaptation of Large Language Models

    Full text link
    We systematically investigate lightweight strategies to adapt large language models (LLMs) for the task of radiology report summarization (RRS). Specifically, we focus on domain adaptation via pretraining (on natural language, biomedical text, and clinical text) and via prompting (zero-shot, in-context learning) or parameter-efficient fine-tuning (prefix tuning, LoRA). Our results on the MIMIC-III dataset consistently demonstrate best performance by maximally adapting to the task via pretraining on clinical text and parameter-efficient fine-tuning on RRS examples. Importantly, this method fine-tunes a mere 0.32% of parameters throughout the model, in contrast to end-to-end fine-tuning (100% of parameters). Additionally, we study the effect of in-context examples and out-of-distribution (OOD) training before concluding with a radiologist reader study and qualitative analysis. Our findings highlight the importance of domain adaptation in RRS and provide valuable insights toward developing effective natural language processing solutions for clinical tasks.Comment: 12 pages, 9 figure

    Clinical Text Summarization: Adapting Large Language Models Can Outperform Human Experts

    Full text link
    Sifting through vast textual data and summarizing key information imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown immense promise in natural language processing (NLP) tasks, their efficacy across diverse clinical summarization tasks has not yet been rigorously examined. In this work, we employ domain adaptation methods on eight LLMs, spanning six datasets and four distinct summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue. Our thorough quantitative assessment reveals trade-offs between models and adaptation methods in addition to instances where recent advances in LLMs may not lead to improved results. Further, in a clinical reader study with six physicians, we depict that summaries from the best adapted LLM are preferable to human summaries in terms of completeness and correctness. Our ensuing qualitative analysis delineates mutual challenges faced by both LLMs and human experts. Lastly, we correlate traditional quantitative NLP metrics with reader study scores to enhance our understanding of how these metrics align with physician preferences. Our research marks the first evidence of LLMs outperforming human experts in clinical text summarization across multiple tasks. This implies that integrating LLMs into clinical workflows could alleviate documentation burden, empowering clinicians to focus more on personalized patient care and other irreplaceable human aspects of medicine.Comment: 23 pages, 22 figure

    Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV

    Get PDF
    Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.

    Energy dependence of ϕ meson production at forward rapidity in pp collisions at the LHC

    Get PDF
    The production of ϕ\phi mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<42.5< y < 4. Measurements of the differential cross section d2σ/dydpT\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}} are presented as a function of the transverse momentum (pTp_{\mathrm {T}}) at the center-of-mass energies s=5.02\sqrt{s}=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s=5.02\sqrt{s}=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pTp_{\mathrm {T}}, and as a function of rapidity in three pTp_{\mathrm {T}} intervals. A hardening of the pTp_{\mathrm {T}}-differential cross section with the collision energy is observed, while, for a given energy, pTp_{\mathrm {T}} spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pTp_{\mathrm {T}}. The new results, complementing the published measurements at s=2.76\sqrt{s}=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ\phi meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pTp_{\mathrm {T}} and rapidity at all the energies.publishedVersio

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA Îłp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the ÎłA system of WÎłA,n=65 GeV is found to be consistent with a power-law behaviour σ(ÎłA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio

    Charged-particle multiplicity fluctuations in Pb–Pb collisions at √sNN = 2.76 TeV

    Get PDF
    Measurements of event-by-event fluctuations of charged-particle multiplicities in Pb–Pb collisions at √sNN = 2.76 TeV using the ALICE detector at the CERN Large Hadron Collider (LHC) are presented in the pseudorapidity range |η|<0.8 and transverse momentum 0.2<pT<2.0 GeV/c. The amplitude of the fluctuations is expressed in terms of the variance normalized by the mean of the multiplicity distribution. The η and pT dependences of the fluctuations and their evolution with respect to collision centrality are investigated. The multiplicity fluctuations tend to decrease from peripheral to central collisions. The results are compared to those obtained from HIJING and AMPT Monte Carlo event generators as well as to experimental data at lower collision energies. Additionally, the measured multiplicity fluctuations are discussed in the context of the isothermal compressibility of the high-density strongly-interacting system formed in central Pb–Pb collisions.publishedVersio
    • 

    corecore